3.188 \(\int \frac{\csc ^5(c+d x)}{a+b \sin ^3(c+d x)} \, dx\)

Optimal. Leaf size=344 \[ \frac{2 (-1)^{2/3} b^{5/3} \tan ^{-1}\left (\frac{\sqrt [3]{-1} \sqrt [3]{b}-\sqrt [3]{a} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^{2/3}-(-1)^{2/3} b^{2/3}}}\right )}{3 a^{7/3} d \sqrt{a^{2/3}-(-1)^{2/3} b^{2/3}}}-\frac{2 b^{5/3} \tan ^{-1}\left (\frac{\sqrt [3]{a} \tan \left (\frac{1}{2} (c+d x)\right )+\sqrt [3]{b}}{\sqrt{a^{2/3}-b^{2/3}}}\right )}{3 a^{7/3} d \sqrt{a^{2/3}-b^{2/3}}}+\frac{2 \sqrt [3]{-1} b^{5/3} \tan ^{-1}\left (\frac{\sqrt [3]{a} \tan \left (\frac{1}{2} (c+d x)\right )+(-1)^{2/3} \sqrt [3]{b}}{\sqrt{a^{2/3}+\sqrt [3]{-1} b^{2/3}}}\right )}{3 a^{7/3} d \sqrt{a^{2/3}+\sqrt [3]{-1} b^{2/3}}}+\frac{b \cot (c+d x)}{a^2 d}-\frac{3 \tanh ^{-1}(\cos (c+d x))}{8 a d}-\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}-\frac{3 \cot (c+d x) \csc (c+d x)}{8 a d} \]

[Out]

(2*(-1)^(2/3)*b^(5/3)*ArcTan[((-1)^(1/3)*b^(1/3) - a^(1/3)*Tan[(c + d*x)/2])/Sqrt[a^(2/3) - (-1)^(2/3)*b^(2/3)
]])/(3*a^(7/3)*Sqrt[a^(2/3) - (-1)^(2/3)*b^(2/3)]*d) - (2*b^(5/3)*ArcTan[(b^(1/3) + a^(1/3)*Tan[(c + d*x)/2])/
Sqrt[a^(2/3) - b^(2/3)]])/(3*a^(7/3)*Sqrt[a^(2/3) - b^(2/3)]*d) + (2*(-1)^(1/3)*b^(5/3)*ArcTan[((-1)^(2/3)*b^(
1/3) + a^(1/3)*Tan[(c + d*x)/2])/Sqrt[a^(2/3) + (-1)^(1/3)*b^(2/3)]])/(3*a^(7/3)*Sqrt[a^(2/3) + (-1)^(1/3)*b^(
2/3)]*d) - (3*ArcTanh[Cos[c + d*x]])/(8*a*d) + (b*Cot[c + d*x])/(a^2*d) - (3*Cot[c + d*x]*Csc[c + d*x])/(8*a*d
) - (Cot[c + d*x]*Csc[c + d*x]^3)/(4*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.477802, antiderivative size = 344, normalized size of antiderivative = 1., number of steps used = 18, number of rules used = 8, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.348, Rules used = {3220, 3767, 8, 3768, 3770, 2660, 618, 204} \[ \frac{2 (-1)^{2/3} b^{5/3} \tan ^{-1}\left (\frac{\sqrt [3]{-1} \sqrt [3]{b}-\sqrt [3]{a} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^{2/3}-(-1)^{2/3} b^{2/3}}}\right )}{3 a^{7/3} d \sqrt{a^{2/3}-(-1)^{2/3} b^{2/3}}}-\frac{2 b^{5/3} \tan ^{-1}\left (\frac{\sqrt [3]{a} \tan \left (\frac{1}{2} (c+d x)\right )+\sqrt [3]{b}}{\sqrt{a^{2/3}-b^{2/3}}}\right )}{3 a^{7/3} d \sqrt{a^{2/3}-b^{2/3}}}+\frac{2 \sqrt [3]{-1} b^{5/3} \tan ^{-1}\left (\frac{\sqrt [3]{a} \tan \left (\frac{1}{2} (c+d x)\right )+(-1)^{2/3} \sqrt [3]{b}}{\sqrt{a^{2/3}+\sqrt [3]{-1} b^{2/3}}}\right )}{3 a^{7/3} d \sqrt{a^{2/3}+\sqrt [3]{-1} b^{2/3}}}+\frac{b \cot (c+d x)}{a^2 d}-\frac{3 \tanh ^{-1}(\cos (c+d x))}{8 a d}-\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}-\frac{3 \cot (c+d x) \csc (c+d x)}{8 a d} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]^5/(a + b*Sin[c + d*x]^3),x]

[Out]

(2*(-1)^(2/3)*b^(5/3)*ArcTan[((-1)^(1/3)*b^(1/3) - a^(1/3)*Tan[(c + d*x)/2])/Sqrt[a^(2/3) - (-1)^(2/3)*b^(2/3)
]])/(3*a^(7/3)*Sqrt[a^(2/3) - (-1)^(2/3)*b^(2/3)]*d) - (2*b^(5/3)*ArcTan[(b^(1/3) + a^(1/3)*Tan[(c + d*x)/2])/
Sqrt[a^(2/3) - b^(2/3)]])/(3*a^(7/3)*Sqrt[a^(2/3) - b^(2/3)]*d) + (2*(-1)^(1/3)*b^(5/3)*ArcTan[((-1)^(2/3)*b^(
1/3) + a^(1/3)*Tan[(c + d*x)/2])/Sqrt[a^(2/3) + (-1)^(1/3)*b^(2/3)]])/(3*a^(7/3)*Sqrt[a^(2/3) + (-1)^(1/3)*b^(
2/3)]*d) - (3*ArcTanh[Cos[c + d*x]])/(8*a*d) + (b*Cot[c + d*x])/(a^2*d) - (3*Cot[c + d*x]*Csc[c + d*x])/(8*a*d
) - (Cot[c + d*x]*Csc[c + d*x]^3)/(4*a*d)

Rule 3220

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> Int[ExpandTr
ig[sin[e + f*x]^m*(a + b*sin[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, e, f}, x] && IntegersQ[m, p] && (EqQ[n, 4]
|| GtQ[p, 0] || (EqQ[p, -1] && IntegerQ[n]))

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\csc ^5(c+d x)}{a+b \sin ^3(c+d x)} \, dx &=\int \left (-\frac{b \csc ^2(c+d x)}{a^2}+\frac{\csc ^5(c+d x)}{a}+\frac{b^2 \sin (c+d x)}{a^2 \left (a+b \sin ^3(c+d x)\right )}\right ) \, dx\\ &=\frac{\int \csc ^5(c+d x) \, dx}{a}-\frac{b \int \csc ^2(c+d x) \, dx}{a^2}+\frac{b^2 \int \frac{\sin (c+d x)}{a+b \sin ^3(c+d x)} \, dx}{a^2}\\ &=-\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}+\frac{3 \int \csc ^3(c+d x) \, dx}{4 a}+\frac{b^2 \int \left (-\frac{1}{3 \sqrt [3]{a} \sqrt [3]{b} \left (\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )}-\frac{(-1)^{2/3}}{3 \sqrt [3]{a} \sqrt [3]{b} \left (\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} \sin (c+d x)\right )}+\frac{\sqrt [3]{-1}}{3 \sqrt [3]{a} \sqrt [3]{b} \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} \sin (c+d x)\right )}\right ) \, dx}{a^2}+\frac{b \operatorname{Subst}(\int 1 \, dx,x,\cot (c+d x))}{a^2 d}\\ &=\frac{b \cot (c+d x)}{a^2 d}-\frac{3 \cot (c+d x) \csc (c+d x)}{8 a d}-\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}+\frac{3 \int \csc (c+d x) \, dx}{8 a}-\frac{b^{5/3} \int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)} \, dx}{3 a^{7/3}}+\frac{\left (\sqrt [3]{-1} b^{5/3}\right ) \int \frac{1}{\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} \sin (c+d x)} \, dx}{3 a^{7/3}}-\frac{\left ((-1)^{2/3} b^{5/3}\right ) \int \frac{1}{\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} \sin (c+d x)} \, dx}{3 a^{7/3}}\\ &=-\frac{3 \tanh ^{-1}(\cos (c+d x))}{8 a d}+\frac{b \cot (c+d x)}{a^2 d}-\frac{3 \cot (c+d x) \csc (c+d x)}{8 a d}-\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}-\frac{\left (2 b^{5/3}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a}+2 \sqrt [3]{b} x+\sqrt [3]{a} x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{3 a^{7/3} d}+\frac{\left (2 \sqrt [3]{-1} b^{5/3}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a}+2 (-1)^{2/3} \sqrt [3]{b} x+\sqrt [3]{a} x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{3 a^{7/3} d}-\frac{\left (2 (-1)^{2/3} b^{5/3}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a}-2 \sqrt [3]{-1} \sqrt [3]{b} x+\sqrt [3]{a} x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{3 a^{7/3} d}\\ &=-\frac{3 \tanh ^{-1}(\cos (c+d x))}{8 a d}+\frac{b \cot (c+d x)}{a^2 d}-\frac{3 \cot (c+d x) \csc (c+d x)}{8 a d}-\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}+\frac{\left (4 b^{5/3}\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^{2/3}-b^{2/3}\right )-x^2} \, dx,x,2 \sqrt [3]{b}+2 \sqrt [3]{a} \tan \left (\frac{1}{2} (c+d x)\right )\right )}{3 a^{7/3} d}-\frac{\left (4 \sqrt [3]{-1} b^{5/3}\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^{2/3}+\sqrt [3]{-1} b^{2/3}\right )-x^2} \, dx,x,2 (-1)^{2/3} \sqrt [3]{b}+2 \sqrt [3]{a} \tan \left (\frac{1}{2} (c+d x)\right )\right )}{3 a^{7/3} d}+\frac{\left (4 (-1)^{2/3} b^{5/3}\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^{2/3}-(-1)^{2/3} b^{2/3}\right )-x^2} \, dx,x,-2 \sqrt [3]{-1} \sqrt [3]{b}+2 \sqrt [3]{a} \tan \left (\frac{1}{2} (c+d x)\right )\right )}{3 a^{7/3} d}\\ &=\frac{2 (-1)^{2/3} b^{5/3} \tan ^{-1}\left (\frac{\sqrt [3]{-1} \sqrt [3]{b}-\sqrt [3]{a} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^{2/3}-(-1)^{2/3} b^{2/3}}}\right )}{3 a^{7/3} \sqrt{a^{2/3}-(-1)^{2/3} b^{2/3}} d}-\frac{2 b^{5/3} \tan ^{-1}\left (\frac{\sqrt [3]{b}+\sqrt [3]{a} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^{2/3}-b^{2/3}}}\right )}{3 a^{7/3} \sqrt{a^{2/3}-b^{2/3}} d}+\frac{2 \sqrt [3]{-1} b^{5/3} \tan ^{-1}\left (\frac{(-1)^{2/3} \sqrt [3]{b}+\sqrt [3]{a} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^{2/3}+\sqrt [3]{-1} b^{2/3}}}\right )}{3 a^{7/3} \sqrt{a^{2/3}+\sqrt [3]{-1} b^{2/3}} d}-\frac{3 \tanh ^{-1}(\cos (c+d x))}{8 a d}+\frac{b \cot (c+d x)}{a^2 d}-\frac{3 \cot (c+d x) \csc (c+d x)}{8 a d}-\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}\\ \end{align*}

Mathematica [C]  time = 1.99384, size = 290, normalized size = 0.84 \[ \frac{3 \left (-a \csc ^4\left (\frac{1}{2} (c+d x)\right )-6 a \csc ^2\left (\frac{1}{2} (c+d x)\right )+a \sec ^4\left (\frac{1}{2} (c+d x)\right )+6 a \sec ^2\left (\frac{1}{2} (c+d x)\right )+24 a \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-24 a \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )-32 b \tan \left (\frac{1}{2} (c+d x)\right )+32 b \cot \left (\frac{1}{2} (c+d x)\right )\right )-64 b^2 \text{RootSum}\left [-8 i \text{$\#$1}^3 a+\text{$\#$1}^6 b-3 \text{$\#$1}^4 b+3 \text{$\#$1}^2 b-b\& ,\frac{-i \text{$\#$1}^2 \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )+i \log \left (\text{$\#$1}^2-2 \text{$\#$1} \cos (c+d x)+1\right )+2 \text{$\#$1}^2 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )-2 \tan ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)-\text{$\#$1}}\right )}{\text{$\#$1}^4 b-2 \text{$\#$1}^2 b-4 i \text{$\#$1} a+b}\& \right ]}{192 a^2 d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Csc[c + d*x]^5/(a + b*Sin[c + d*x]^3),x]

[Out]

(-64*b^2*RootSum[-b + 3*b*#1^2 - (8*I)*a*#1^3 - 3*b*#1^4 + b*#1^6 & , (-2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] -
#1)] + I*Log[1 - 2*Cos[c + d*x]*#1 + #1^2] + 2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^2 - I*Log[1 - 2*Cos
[c + d*x]*#1 + #1^2]*#1^2)/(b - (4*I)*a*#1 - 2*b*#1^2 + b*#1^4) & ] + 3*(32*b*Cot[(c + d*x)/2] - 6*a*Csc[(c +
d*x)/2]^2 - a*Csc[(c + d*x)/2]^4 - 24*a*Log[Cos[(c + d*x)/2]] + 24*a*Log[Sin[(c + d*x)/2]] + 6*a*Sec[(c + d*x)
/2]^2 + a*Sec[(c + d*x)/2]^4 - 32*b*Tan[(c + d*x)/2]))/(192*a^2*d)

________________________________________________________________________________________

Maple [C]  time = 0.21, size = 217, normalized size = 0.6 \begin{align*}{\frac{1}{64\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}}+{\frac{1}{8\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-{\frac{b}{2\,{a}^{2}d}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{2\,{b}^{2}}{3\,{a}^{2}d}\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{6}+3\,a{{\it \_Z}}^{4}+8\,b{{\it \_Z}}^{3}+3\,a{{\it \_Z}}^{2}+a \right ) }{\frac{{{\it \_R}}^{3}+{\it \_R}}{{{\it \_R}}^{5}a+2\,{{\it \_R}}^{3}a+4\,{{\it \_R}}^{2}b+{\it \_R}\,a}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -{\it \_R} \right ) }}-{\frac{1}{64\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-4}}-{\frac{1}{8\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-2}}+{\frac{3}{8\,da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }+{\frac{b}{2\,{a}^{2}d} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)^5/(a+b*sin(d*x+c)^3),x)

[Out]

1/64/d/a*tan(1/2*d*x+1/2*c)^4+1/8/d*tan(1/2*d*x+1/2*c)^2/a-1/2/d/a^2*tan(1/2*d*x+1/2*c)*b+2/3/d/a^2*b^2*sum((_
R^3+_R)/(_R^5*a+2*_R^3*a+4*_R^2*b+_R*a)*ln(tan(1/2*d*x+1/2*c)-_R),_R=RootOf(_Z^6*a+3*_Z^4*a+8*_Z^3*b+3*_Z^2*a+
a))-1/64/d/a/tan(1/2*d*x+1/2*c)^4-1/8/d/a/tan(1/2*d*x+1/2*c)^2+3/8/d/a*ln(tan(1/2*d*x+1/2*c))+1/2/d*b/a^2/tan(
1/2*d*x+1/2*c)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^5/(a+b*sin(d*x+c)^3),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^5/(a+b*sin(d*x+c)^3),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)**5/(a+b*sin(d*x+c)**3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc \left (d x + c\right )^{5}}{b \sin \left (d x + c\right )^{3} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^5/(a+b*sin(d*x+c)^3),x, algorithm="giac")

[Out]

integrate(csc(d*x + c)^5/(b*sin(d*x + c)^3 + a), x)